Loading...
 
Skip to main content

NE - Neuroevolution

Description

Neuroevolution is a machine learning approach that applies evolutionary computation (EC) to constructing artificial neural networks (NNs). Compared with other neural network training methods, Neuroevolution is highly general and allows learning without explicit targets, with arbitrary neural models and network structures. Neuroevolution has been successfully used to address challenging tasks in a wide range of areas, such as reinforcement learning, supervised learning, unsupervised learning, image analysis, computer vision, and natural language processing.

The Neuroevolution track at GECCO aims to encourage knowledge exchange between interested researchers in this area. It covers advances in the theory and applications of Neuroevolution, including all different EC methods for evolving all types of neural networks, alone and in combination with other neural learning algorithms. Authors are invited to submit their original and unpublished work to this track.

Scope

More concretely, topics of interest include but are not limited to:

  • Neuroevolution algorithms involving:
    • Any EC method, e.g. genetic algorithms, evolutionary strategy, and genetic programming, particle swarm optimisation, differential evolution, meta-heuristics, Quality-Diversity, and hybrid methods.
    • Any type of neural networks, e.g. Convolutional neural network (CNN), Recurrent neural network (RNN), Long short-term memory (LSTM), Deep Belief Network (DBN), transformers, and autoencoders.
    • Evolutionary neural architecture search
    • Optimisation of network hyperparameters, activation and loss functions, learning dynamics, data augmentation, and initialisation
    • Novel candidate representations
    • Novel search mechanisms
    • Novel fitness functions
    • Surrogate assisted Neuroevolution
    • Methods for improving efficiency
    • Methods for improving regularisation
    • Multi-objective Neuroevolution
    • Neuroevolution for reinforcement learning, supervised learning, unsupervised learning
    • Neuroevolution for transfer learning, one-short learning, few-short learning, multitask learning
    • Parallelised and distributed realisations of Neuroevolution
    • Combinations of Neuroevolution and other neural learning algorithms
    • Interpretable/explainable model learning
  • Applications of Neuroevolution:
    • Computer vision, image processing and pattern recognition
    • Text mining, natural language processing
    • Speech recognition
    • Neural Architecture Search
    • Machine translation
    • Medical and biological problems
    • Evolutionary robotics
    • Artificial life
    • Time series analysis
    • Cyber security
    • Scheduling and combinatorial optimization
    • Healthcare
    • Finance, fraud detection and business
    • Social media data analysis
    • Game playing
    • Visualisation

Track Chairs

Image

Dennis Wilson

ISAE-Supaero, University of Toulouse | webpage

Dennis G. Wilson is an Associate Professor at ISAE-Supaero in Toulouse, France. They research
evolutionary algorithms, deep learning, and applications of AI to climate problems.


Image

Christian Gagné

Université Laval, Canada | webpage

Christian Gagné is a professor at the Electrical Engineering and Computer Engineering Department of Université Laval since 2008. He is the director of the Institute Intelligence and Data (IID) of Université Laval. He holds a Canada-CIFAR Artificial Intelligence Chair and is an associate member to Mila. He is also a member of the Computer Vision and Systems Laboratory (CVSL), a component of the Robotics, Vision and Machine Intelligence Research Centre (CeRVIM), and the Big Data Research Centre (BDRC) of Université Laval. He is also participating to the REPARTI and UNIQUE strategic clusters of the FRQNT, the VITAM FRQS center and the International Observatory on the Societal Impacts of AI (OBVIA).

He completed a PhD in Electrical Engineering (Université Laval) in 2005 and then had a postdoctoral stay jointly at INRIA Saclay (France) and the University of Lausanne (Switzerland) in 2005-2006. He worked as research associate in the industry between 2006 and 2008. He is a member of executive board the ACM Special Interest Group on Evolutionary Computation (SIGEVO) since 2017.

His research interests are on the development of methods for machine learning and stochastic optimization. In particular, he is interested by deep neural networks, representation learning and transfer, meta-learning and multitask learning. He is also interested by optimization approaches based on probabilistic models and evolutionary algorithms for black-box optimization and automatic programming, among others. A significant share of his research work is on the practical use of these techniques in domains such as computer vision, microscopy, health, energy and transportation.